References for Molecular Biology of Brain Tumors in Children

  1. Hegi ME, Diserens AC, Gorlia T, et al.: MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 352(10):997-1003, 2005
  2. Pollack IF, Hamilton RL, Sobol RW, et al.: O6-methylguanine-DNA methyltransferase expression strongly correlates with outcome in childhood malignant gliomas: results from the CCG-945 Cohort. J Clin Oncol. 24(21):3431-7, 2006
  3. Donson AM, Addo-Yobo SO, Handler MH, et al.: MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer. 48(4):403-7, 2007
  4. Cairncross JG, Ueki K, Zlatescu MC, et al.: Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. 90(19):1473-9, 1998
  5. Smith JS, Perry A, Borell TJ, et al.: Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol. 18(3):636-45, 2000
  6. Nowell PC, Hungerford DA: Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 25:85-109, 1960
  7. Rowley JD: Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 243(5405):290-3, 1973
  8. Druker BJ, Tamura S, Buchdunger E, et al.: Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 2(5):561-6, 1996
  9. Druker BJ, Sawyers CL, Kantarjian H, et al.: Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 344(14):1038-42, 2001
  10. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391(6669):806-11, 1998
  11. Chapman EJ, Carrington JC: Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet. 8(11):884-96, 2007
  12. Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 11(4):441-50, 2006
  13. Scherr M, Morgan MA, Eder M: Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem. 10(3):245-56, 2003
  14. Bar M, Wyman SK, Fritz BR, et al.: MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells. 26(10):2496-505, 2008
  15. Svoboda P, Flemr M: The role of miRNAs and endogenous siRNAs in maternal-to-zygotic reprogramming and the establishment of pluripotency. EMBO Rep. 11(8):590-7, 2010
  16. Li M, Lee KF, Lu Y, et al.: Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell. 16(6):533-46, 2009
  17. Papagiannakopoulos T, Shapiro A, Kosik KS: MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 68(19):8164-72, 2008
  18. Calin GA, Dumitru CD, Shimizu M, et al.: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 99(24):15524-9, 2002
  19. He L, Thomson JM, Hemann MT, et al.: A microRNA polycistron as a potential human oncogene. Nature. 435(7043):828-33, 2005
  20. Johnson SM, Grosshans H, Shingara J, et al.: RAS is regulated by the let-7 microRNA family. Cell. 120(5):635-47, 2005
  21. Birks DK, Barton VN, Donson AM, Handler MH, Vibhakar R, Foreman NK: Survey of MicroRNA expression in pediatric brain tumors. Pediatr Blood Cancer. 56(2):211-6, 2011
  22. Liu J, Carmell MA, Rivas FV, et al.: Argonaute2 is the catalytic engine of mammalian RNAi. Science. 305(5689):1437-41, 2004
  23. Meister G, Landthaler M, Patkaniowska A, et al.: Human Argonaute 2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 15(2):185-97, 2004
  24. Lim LP, Lau NC, Garrett-Engele P, et al.: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 433(7027):769-73, 2005
  25. Bagga S, Bracht J, Hunter S, et al.: Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 122(4):553-63, 2005
  26. Zhao TY, Zou SP, Alimova YV, et al.: Short interfering RNA-induced gene silencing is transmitted between cells from the mammalian central nervous system. J Neurochem. 98(5):1541-50, 2006
  27. Ohshima K, Inoue K, Fujiwara A, et al.: Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One. 5(10):e13247, 2010
  28. Chernolovskaya EL, Zenkova MA: Chemical modification of siRNA. Curr Opin Mol Ther. 12(2):158-67, 2010
  29. Phalon C, Rao DD, Nemunaitis J: Potential use of RNA interference in cancer therapy. Expert Rev Mol Med. 12:e26, 2010
  30. Kantarjian H, Talpaz M, O’Brien S, et al.: Survival benefit with imatinib mesylate therapy in patients with accelerated-phase chronic myelogenous leukemia–comparison with historic experience. Cancer. 103(10):2099-108, 2005
  31. Essat M, Cooper K: Imatinib as adjuvant therapy for gastrointestinal stromal tumours – A systematic review. Int J Cancer. 2010
  32. Chamberlain MC: Emerging clinical principles on the use of bevacizumab for the treatment of malignant gliomas. Cancer. 116(17):3988-99, 2010
  33. Narayana A, Kunnakkat S, Chacko-Mathew J, et al.: Bevacizumab in recurrent high-grade pediatric gliomas. Neuro Oncol. 12(9):985-90, 2010
  34. Gururangan S, Chi SN, Young Poussaint T, et al.: Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: a Pediatric Brain Tumor Consortium study. J Clin Oncol. 28(18):3069-75, 2010
  35. Louis DN, Ohgaki H, Wiestler OD, et al.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114(2):97-109, 2007
  36. Eberhart CG, Tihan T, Burger PC: Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol. 59(4):333-7, 2000
  37. Thompson MC, Fuller C, Hogg TL, et al.: Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol. 24(12):1924-31, 2006
  38. Baeza N, Masuoka J, Kleihues P, Ohgaki H: AXIN1 mutations but not deletions in cerebellar medulloblastomas. Oncogene. 22(4):632-6, 2003
  39. Huang H, Mahler-Araujo BM, Sankila A, et al.: APC mutations in sporadic medulloblastomas. Am J Pathol. 156(2):433-7, 2000
  40. Zurawel RH, Chiappa SA, Allen C, Raffel C: Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res. 58(5):896-9, 1998
  41. Northcott PA, Korshunov A, Witt H, et al.: Medulloblastoma Comprises Four Distinct Molecular Variants. J Clin Oncol. 2010
  42. Kool M, Koster J, Bunt J, et al.: Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One. 3(8):e3088, 2008
  43. Yee DS, Tang Y, Li X, et al.: The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer. 9:162, 2010
  44. Dai J, Hall CL, Escara-Wilke J, Mizokami A, Keller JM, Keller ET: Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Res. 68(14):5785-94, 2008
  45. Huang CL, Liu D, Ishikawa S, et al.: Wnt1 overexpression promotes tumour progression in non-small cell lung cancer. Eur J Cancer. 44(17):2680-8, 2008
  46. Zerlin M, Julius MA, Kitajewski J: Wnt/Frizzled signaling in angiogenesis. Angiogenesis. 11(1):63-9, 2008
  47. Niu G, Chen X: Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets. 11(8):1000-17, 2010
  48. Attard TM, Giglio P, Koppula S, Snyder C, Lynch HT: Brain tumors in individuals with familial adenomatous polyposis: a cancer registry experience and pooled case report analysis. Cancer. 109(4):761-6, 2007
  49. Benchabane H, Ahmed Y: The adenomatous polyposis coli tumor suppressor and Wnt signaling in the regulation of apoptosis. Adv Exp Med Biol. 656:75-84, 2009
  50. Roderick HL, Cook SJ: Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 8(5):361-75, 2008
  51. Bergner A, Huber RM: Regulation of the endoplasmic reticulum Ca(2+)-store in cancer. Anticancer Agents Med Chem. 8(7):705-9, 2008
  52. Ishitani T, Kishida S, Hyodo-Miura J, et al.: The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol. 23(1):131-9, 2003
  53. Kongkham PN, Northcott PA, Croul SE, Smith CA, Taylor MD, Rutka JT: The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigenetically silenced in medulloblastoma. Oncogene. 29(20):3017-24, 2010
  54. Vibhakar R, Foltz G, Yoon JG, et al.: Dickkopf-1 is an epigenetically silenced candidate tumor suppressor gene in medulloblastoma. Neuro Oncol. 9(2):135-44, 2007
  55. Bos CL, Kodach LL, van den Brink GR, et al.: Effect of aspirin on the Wnt/beta-catenin pathway is mediated via protein phosphatase 2A. Oncogene. 25(49):6447-56, 2006
  56. Nath N, Kashfi K, Chen J, Rigas B: Nitric oxide-donating aspirin inhibits beta-catenin/T cell factor (TCF) signaling in SW480 colon cancer cells by disrupting the nuclear beta-catenin-TCF association. Proc Natl Acad Sci U S A. 100(22):12584-9, 2003
  57. Park CH, Chang JY, Hahm ER, Park S, Kim HK, Yang CH: Quercetin, a potent inhibitor against beta-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Biophys Res Commun. 328(1):227-34, 2005
  58. He B, Reguart N, You L, et al.: Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene. 24(18):3054-8, 2005
  59. DeAlmeida VI, Miao L, Ernst JA, Koeppen H, Polakis P, Rubinfeld B: The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res. 67(11):5371-9, 2007
  60. Shan J, Shi DL, Wang J, Zheng J: Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry. 44(47):15495-503, 2005
  61. Zhang Y, Appleton BA, Wiesmann C, et al.: Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nat Chem Biol. 5(4):217-9, 2009
  62. de Haas T, Hasselt N, Troost D, et al.: Molecular risk stratification of medulloblastoma patients based on immunohistochemical analysis of MYC, LDHB, and CCNB1 expression. Clin Cancer Res. 14(13):4154-60, 2008
  63. Zha X, Wang F, Wang Y, et al.: Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis. Cancer Res. 71(1):13-8, 2011
  64. Johnson RL, Rothman AL, Xie J, et al.: Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 272(5268):1668-71, 1996
  65. Hahn H, Wicking C, Zaphiropoulous PG, et al.: Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 85(6):841-51, 1996
  66. Hahn H, Christiansen J, Wicking C, et al.: A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental abnormalities. J Biol Chem. 271(21):12125-8, 1996
  67. Ingham PW, McMahon AP: Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15(23):3059-87, 2001
  68. Wong SY, Reiter JF: The primary cilium at the crossroads of mammalian hedgehog signaling. Curr Top Dev Biol. 85:225-60, 2008
  69. Low JA, de Sauvage FJ: Clinical experience with Hedgehog pathway inhibitors. J Clin Oncol. 28(36):5321-6, 2010
  70. Slade I, Murray A, Hanks S, et al.: Heterogeneity of familial medulloblastoma and contribution of germline PTCH1 and SUFU mutations to sporadic medulloblastoma. Fam Cancer. 2010
  71. Kinzler KW, Vogelstein B: The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol. 10(2):634-42, 1990
  72. Duman-Scheel M, Weng L, Xin S, Du W: Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature. 417(6886):299-304, 2002
  73. Bigelow RL, Chari NS, Unden AB, et al.: Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J Biol Chem. 279(2):1197-205, 2004
  74. Yoo YA, Kang MH, Kim JS, Oh SC: Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis. 29(3):480-90, 2008
  75. Katoh Y, Katoh M: Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med. 9(7):873-86, 2009
  76. Taipale J, Chen JK, Cooper MK, et al.: Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature. 406(6799):1005-9, 2000
  77. Chen JK, Taipale J, Cooper MK, Beachy PA: Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16(21):2743-8, 2002
  78. Berman DM, Karhadkar SS, Hallahan AR, et al.: Medulloblastoma growth inhibition by hedgehog pathway blockade. Science. 297(5586):1559-61, 2002
  79. Coon V, Laukert T, Pedone CA, Laterra J, Kim KJ, Fults DW: Molecular therapy targeting Sonic hedgehog and hepatocyte growth factor signaling in a mouse model of medulloblastoma. Mol Cancer Ther. 9(9):2627-36, 2010
  80. Tremblay MR, Lescarbeau A, Grogan MJ, et al.: Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem. 52(14):4400-18, 2009
  81. Kim J, Tang JY, Gong R, et al.: Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell. 17(4):388-99, 2010
  82. Bangaru ML, Chen S, Woodliff J, Kansra S: Curcumin (diferuloylmethane) induces apoptosis and blocks migration of human medulloblastoma cells. Anticancer Res. 30(2):499-504, 2010
  83. Elamin MH, Shinwari Z, Hendrayani SF, et al.: Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Mol Carcinog. 49(3):302-14, 2010
  84. Von Hoff DD, LoRusso PM, Rudin CM, et al.: Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 361(12):1164-72, 2009
  85. Amente S, Lania L, Avvedimento EV, Majello B: DNA oxidation drives Myc mediated transcription. Cell Cycle. 9(15):3002-4, 2010
  86. Albihn A, Johnsen JI, Henriksson MA: MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res. 107:163-224, 2010
  87. Schulein C, Eilers M: An unsteady scaffold for Myc. EMBO J. 28(5):453-4, 2009
  88. Hatton BA, Knoepfler PS, Kenney AM, et al.: N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Cancer Res. 66(17):8655-61, 2006
  89. Pfister S, Remke M, Benner A, et al.: Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol. 27(10):1627-36, 2009
  90. Zhou L, Picard D, Ra YS, et al.: Silencing of thrombospondin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res. 70(20):8199-210, 2010
  91. Grotzer MA, Hogarty MD, Janss AJ, et al.: MYC messenger RNA expression predicts survival outcome in childhood primitive neuroectodermal tumor/medulloblastoma. Clin Cancer Res. 7(8):2425-33, 2001
  92. Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S: LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development. 132(5):885-96, 2005
  93. Baron M: An overview of the Notch signalling pathway. Semin Cell Dev Biol. 14(2):113-9, 2003
  94. Adesina AM, Nguyen Y, Mehta V, et al.: FOXG1 dysregulation is a frequent event in medulloblastoma. J Neurooncol. 85(2):111-22, 2007
  95. de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R: Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro Oncol. 10(6):1040-60, 2008
  96. Fan X, Matsui W, Khaki L, et al.: Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66(15):7445-52, 2006
  97. Wang J, Wakeman TP, Lathia JD, et al.: Notch promotes radioresistance of glioma stem cells. Stem Cells. 28(1):17-28, 2010
  98. Bouffet E, Perilongo G, Canete A, Massimino M: Intracranial ependymomas in children: a critical review of prognostic factors and a plea for cooperation. Med Pediatr Oncol. 30(6):319-29; discussion 29-31, 1998
  99. Andreiuolo F, Puget S, Peyre M, et al.: Neuronal differentiation distinguishes supratentorial and infratentorial childhood ependymomas. Neuro Oncol. 12(11):1126-34, 2010
  100. Grill J, Le Deley MC, Gambarelli D, et al.: Postoperative chemotherapy without irradiation for ependymoma in children under 5 years of age: a multicenter trial of the French Society of Pediatric Oncology. J Clin Oncol. 19(5):1288-96, 2001
  101. Modena P, Lualdi E, Facchinetti F, et al.: Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol. 24(33):5223-33, 2006
  102. Taylor MD, Poppleton H, Fuller C, et al.: Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 8(4):323-35, 2005
  103. Barton VN, Donson AM, Kleinschmidt-DeMasters BK, et al.: Unique molecular characteristics of pediatric myxopapillary ependymoma. Brain Pathol. 20(3):560-70, 2010
  104. Mallo M, Wellik DM, Deschamps J: Hox genes and regional patterning of the vertebrate body plan. Dev Biol. 344(1):7-15, 2010
  105. Magli MC, Largman C, Lawrence HJ: Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol. 173(2):168-77, 1997
  106. Cillo C: HOX genes in human cancers. Invasion Metastasis. 14(1-6):38-49, 1994
  107. Lamszus K, Lachenmayer L, Heinemann U, et al.: Molecular genetic alterations on chromosomes 11 and 22 in ependymomas. Int J Cancer. 91(6):803-8, 2001
  108. Ebert C, von Haken M, Meyer-Puttlitz B, et al.: Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol. 155(2):627-32, 1999
  109. Stamenkovic I, Yu Q: Merlin, a “magic” linker between extracellular cues and intracellular signaling pathways that regulate cell motility, proliferation, and survival. Curr Protein Pept Sci. 11(6):471-84, 2010
  110. McClatchey AI, Saotome I, Mercer K, et al.: Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev. 12(8):1121-33, 1998
  111. Mazewski C, Soukup S, Ballard E, et al.: Karyotype studies in 18 ependymomas with literature review of 107 cases. Cancer Genet Cytogenet. 113(1):1-8, 1999
  112. Grill J, Avet-Loiseau H, Lellouch-Tubiana A, et al.: Comparative genomic hybridization detects specific cytogenetic abnormalities in pediatric ependymomas and choroid plexus papillomas. Cancer Genet Cytogenet. 136(2):121-5, 2002
  113. Reardon DA, Entrekin RE, Sublett J, et al.: Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Genes Chromosomes Cancer. 24(3):230-7, 1999
  114. Nijssen PC, Deprez RH, Tijssen CC, et al.: Familial anaplastic ependymoma: evidence of loss of chromosome 22 in tumour cells. J Neurol Neurosurg Psychiatry. 57(10):1245-8, 1994
  115. Kipreos ET, Pagano M: The F-box protein family. Genome Biol. 1(5):REVIEWS3002, 2000
  116. Li Q, Wang X, Lu Z, et al.: Polycomb CBX7 directly controls trimethylation of histone H3 at lysine 9 at the p16 locus. PLoS One. 5(10):e13732, 2010
  117. Zhang XW, Zhang L, Qin W, et al.: Oncogenic role of the chromobox protein CBX7 in gastric cancer. J Exp Clin Cancer Res. 29:114, 2010
  118. Firestein R, Cleary ML: Pseudo-phosphatase Sbf1 contains an N-terminal GEF homology domain that modulates its growth regulatory properties. J Cell Sci. 114(Pt 16):2921-7, 2001
  119. Suarez-Merino B, Hubank M, Revesz T, et al.: Microarray analysis of pediatric ependymoma identifies a cluster of 112 candidate genes including four transcripts at 22q12.1-q13.3. Neuro Oncol. 7(1):20-31, 2005
  120. Takemaru K, Yamaguchi S, Lee YS, et al.: Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway. Nature. 422(6934):905-9, 2003
  121. Puget S, Grill J, Valent A, et al.: Candidate genes on chromosome 9q33-34 involved in the progression of childhood ependymomas. J Clin Oncol. 27(11):1884-92, 2009
  122. Mack SC, Taylor MD: The genetic and epigenetic basis of ependymoma. Childs Nerv Syst. 25(10):1195-201, 2009
  123. Gonzalez-Gomez P, Bello MJ, Alonso ME, et al.: CpG island methylation status and mutation analysis of the RB1 gene essential promoter region and protein-binding pocket domain in nervous system tumours. Br J Cancer. 88(1):109-14, 2003
  124. Rousseau E, Ruchoux MM, Scaravilli F, et al.: CDKN2A, CDKN2B and p14ARF are frequently and differentially methylated in ependymal tumours. Neuropathol Appl Neurobiol. 29(6):574-83, 2003
  125. Alonso ME, Bello MJ, Gonzalez-Gomez P, et al.: Aberrant promoter methylation of multiple genes in oligodendrogliomas and ependymomas. Cancer Genet Cytogenet. 144(2):134-42, 2003
  126. Alonso ME, Bello MJ, Gonzalez-Gomez P, et al.: Aberrant CpG island methylation of multiple genes in ependymal tumors. J Neurooncol. 67(1-2):159-65, 2004
  127. Michalowski MB, de Fraipont F, Michelland S, et al.: Methylation of RASSF1A and TRAIL pathway-related genes is frequent in childhood intracranial ependymomas and benign choroid plexus papilloma. Cancer Genet Cytogenet. 166(1):74-81, 2006
  128. Lindsey JC, Lusher ME, Strathdee G, et al.: Epigenetic inactivation of MCJ (DNAJD1) in malignant paediatric brain tumours. Int J Cancer. 118(2):346-52, 2006
  129. Muhlisch J, Bajanowski T, Rickert CH, et al.: Frequent but borderline methylation of p16 (INK4a) and TIMP3 in medulloblastoma and sPNET revealed by quantitative analyses. J Neurooncol. 83(1):17-29, 2007
  130. Hamilton G, Yee KS, Scrace S, O’Neill E: ATM regulates a RASSF1A-dependent DNA damage response. Curr Biol. 19(23):2020-5, 2009
  131. Whitehurst AW, Ram R, Shivakumar L, et al.: The RASSF1A tumor suppressor restrains anaphase-promoting complex/cyclosome activity during the G1/S phase transition to promote cell cycle progression in human epithelial cells. Mol Cell Biol. 28(10):3190-7, 2008
  132. Guo C, Zhang X, Pfeifer GP: The tumor suppressor Ras association domain family 1A (RASSF1A) prevents dephosphorylation of the mammalian STE20-like kinases MST1 and MST2. J Biol Chem. 2011
  133. Donson AM, Birks DK, Barton VN, et al.: Immune gene and cell enrichment is associated with a good prognosis in ependymoma. J Immunol. 183(11):7428-40, 2009
  134. Dyer S, Prebble E, Davison V, et al.: Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. Am J Pathol. 161(6):2133-41, 2002
  135. Mendrzyk F, Korshunov A, Benner A, et al.: Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res. 12(7 Pt 1):2070-9, 2006
  136. Squire J, Zhou A, Hassel BA, et al.: Localization of the interferon-induced, 2-5A-dependent RNase gene (RNS4) to human chromosome 1q25. Genomics. 19(1):174-5, 1994
  137. Player MR, Torrence PF: The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther. 78(2):55-113, 1998
  138. Gilbertson RJ, Bentley L, Hernan R, et al.: ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin Cancer Res. 8(10):3054-64, 2002
  139. Pfister S, Janzarik WG, Remke M, et al.: BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 118(5):1739-49, 2008
  140. Deshmukh H, Yeh TH, Yu J, et al.: High-resolution, dual-platform aCGH analysis reveals frequent HIPK2 amplification and increased expression in pilocytic astrocytomas. Oncogene. 27(34):4745-51, 2008
  141. Jacob K, Albrecht S, Sollier C, et al.: Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. Br J Cancer. 101(4):722-33, 2009
  142. Tabori U, Vukovic B, Zielenska M, et al.: The role of telomere maintenance in the spontaneous growth arrest of pediatric low-grade gliomas. Neoplasia. 8(2):136-42, 2006
  143. Tabori U, Ma J, Carter M, et al.: Human telomere reverse transcriptase expression predicts progression and survival in pediatric intracranial ependymoma. J Clin Oncol. 24(10):1522-8, 2006
  144. Kelland LR: Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics–current status and future prospects. Eur J Cancer. 41(7):971-9, 2005
  145. Wong VC, Morrison A, Tabori U, et al.: Telomerase inhibition as a novel therapy for pediatric ependymoma. Brain Pathol. 20(4):780-6, 2010
  146. Brassat U, Balabanov S, Bali D, et al.: Functional p53 is required for effective execution of telomerase inhibition in BCR-ABL-positive CML cells. Exp Hematol. 39(1):66-76 e1-2, 2011
  147. Rao YK, Kao TY, Wu MF, et al.: Identification of small molecule inhibitors of telomerase activity through transcriptional regulation of hTERT and calcium induction pathway in human lung adenocarcinoma A549 cells. Bioorg Med Chem. 18(19):6987-94, 2010
  148. George J, Banik NL, Ray SK: Knockdown of hTERT and concurrent treatment with interferon-gamma inhibited proliferation and invasion of human glioblastoma cell lines. Int J Biochem Cell Biol. 42(7):1164-73, 2010
  149. Zhu X, Yang N, Cai J, et al.: The intrabody targeting of hTERT attenuates the immortality of cancer cells. Cell Mol Biol Lett. 15(1):32-45, 2010
  150. Driggers L, Zhang JG, Newcomb EW, Ge L, Hoa N, Jadus MR: Immunotherapy of pediatric brain tumor patients should include an immunoprevention strategy: a medical hypothesis paper. J Neurooncol. 97(2):159-69, 2010
  151. Paugh BS, Qu C, Jones C, et al.: Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 28(18):3061-8, 2010
  152. Faury D, Nantel A, Dunn SE, et al.: Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol. 25(10):1196-208, 2007
  153. Kelly JD, Haldeman BA, Grant FJ, et al.: Platelet-derived growth factor (PDGF) stimulates PDGF receptor subunit dimerization and intersubunit trans-phosphorylation. J Biol Chem. 266(14):8987-92, 1991
  154. Heldin CH, Ostman A, Ronnstrand L: Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta. 1378(1):F79-113, 1998
  155. Andrae J, Gallini R, Betsholtz C: Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22(10):1276-312, 2008
  156. Rowinsky EK: Targeting the molecular target of rapamycin (mTOR). Curr Opin Oncol. 16(6):564-75, 2004
  157. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, et al.: PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron. 51(2):187-99, 2006
  158. Vigil D, Cherfils J, Rossman KL, Der CJ: Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 10(12):842-57, 2010
  159. Daston MM, Scrable H, Nordlund M, et al.: The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells, and oligodendrocytes. Neuron. 8(3):415-28, 1992
  160. Viskochil D, Buchberg AM, Xu G, et al.: Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell. 62(1):187-92, 1990
  161. Gottfried ON, Viskochil DH, Couldwell WT: Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Neurosurg Focus. 28(1):E8, 2010
  162. Listernick R, Darling C, Greenwald M, et al.: Optic pathway tumors in children: the effect of neurofibromatosis type 1 on clinical manifestations and natural history. J Pediatr. 127(5):718-22, 1995
  163. Listernick R, Ferner RE, Liu GT, et al.: Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol. 61(3):189-98, 2007
  164. Zhu Y, Harada T, Liu L, et al.: Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development. 132(24):5577-88, 2005
  165. Zhu Y, Guignard F, Zhao D, et al.: Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell. 8(2):119-30, 2005
  166. Zarghooni M, Bartels U, Lee E, et al.: Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol. 28(8):1337-44, 2010
  167. Herceg Z, Wang ZQ: Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res. 477(1-2):97-110, 2001
  168. Dungey FA, Loser DA, Chalmers AJ: Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys. 72(4):1188-97, 2008
  169. Russo AL, Kwon HC, Burgan WE, et al.: In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin Cancer Res. 15(2):607-12, 2009
  170. Tentori L, Portarena I, Torino F, et al.: Poly(ADP-ribose) polymerase inhibitor increases growth inhibition and reduces G(2)/M cell accumulation induced by temozolomide in malignant glioma cells. Glia. 40(1):44-54, 2002
  171. Tong WM, Hande MP, Lansdorp PM, et al.: DNA strand break-sensing molecule poly(ADP-Ribose) polymerase cooperates with p53 in telomere function, chromosome stability, and tumor suppression. Mol Cell Biol. 21(12):4046-54, 2001